
CS3485
Deep Learning for Computer Vision

Lec 6: Pytorch II – Images and Regularization

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Announcements

■ Quiz 2:
● Will happen after class.
● Make sure to remember it every week.

■ Lab 2 due today!

MLPs in Pytorch

■ Last time we saw how to write a simple Pytorch scripts
and use it in a classification problem (on the right).

■ However, despite using SGD, we were not
mini-batches and, truth be told the data was quite
simple to work with.

■ Today we’ll improve our pytorch implementation from
last time and cover the important topic of
regularization in Deep Learning.

-2 -1 1 2

2

1

-1

-2

Legend

Train

Test

Our dataset from last time

Making more complex networks

■ The toy dataset we last time before isn’t a
good example of realistic data.

■ A more realistic (and more convenient to
Computer Vision) dataset in the MNIST
handwritten digits.

■ The database contains 28×28 grayscale
images representing the digits 0 through 9
(some depicted on the right).

■ The data is split into two subsets, with
60000 images for training and 10000
images for testing.

■ Before we go there, we should ask
ourselves: what is an image?

What is an image?

Grayscale
image

Individual Pixel Gray Values■ An image as a data structure is simply
a matrix (or matrices) of integer
numbers ranging from 0 to 255 (one
byte of data).

■ Pixels are the individual subdivisions
of an image, each with one sole color.

■ A grayscale image is an image that
only needs one of these matrices to
represent its data.

■ In a grayscale image, each of its pixels
is colored with a shade of gray,
whose color ranges from black (value
0) to white (value 255).

One pixel

■ For colored images, we make each individual pixel contain 3 integers, each in [0, 255].
■ These values represent the the intensities of Red, Blue and Green (RGB)* in that pixel, in

this order, giving the name for thai kind of image an RGB image.
■ Each color channel (R, G or B) is then represented by a gray scale image and the full

image is the stacking of its channels.

What is an image?

RGB image Red channel Green channel Blue channel

, ,

Stack of channels

* There are other ways to define a colored image that is not RGB (ex.: CYMK = Cyan, Yellow, Magenta and Black).

Loading the data

■ With that out of the way, we can now (down)load the MNIST dataset, which PyTorch
provides (along with other datasets) in the torchvision library.

from torchvision import datasets

data_folder = '~/data/MNIST'
mnist_train = datasets.MNIST(data_folder, download=True, train=True)
X_train, y_train = mnist_train.data, mnist_train.targets

from torch.utils.data import Dataset
class MNISTDataset(Dataset):
 def __init__(self, x, y):
 x = x.float()/255 # Data rescaling
 x = x.view(-1,28*28) # Data reshaping
 self.x, self.y = x, y
 def __len__(self):
 return len(self.x)
 def __getitem__(self, ix):
 x, y = self.x[ix], self.y[ix]
 return x.to(device), y.to(device)

■ We also create a class for our dataset
that inherits from Pytorch’s Dataset.

■ Note that two pre-processing actions
take place on the data:
● Rescaling: it makes all data values be

in the range [0, 1].
● Reshaping: turn images into vectors.

Visualizing the data

■ It is always a good practice to check how the data looks like before working on it.

■ This is an example of how PyTorch organizes the data dimensions: (N,C,H,W)
● First the number of datapoints, (N); then the number of channels in each point, (C); then the

height (H) and width of each point (W).
● If either dimension (N, C, H or W) is just 1, it won’t show up.

■ We can check the data itself. Here are the first 4 data points and their true labels:

print(x_train.shape)
print(y_train.shape)

torch.Size([60000, 28, 28])
torch.Size([60000])

import matplotlib.pyplot as plt
plt.figure(figsize=(10,3))
for i in range(4):
 plt.subplot(1,4,i+1)
 plt.imshow(x_train[i])
 plt.title(f"Label {y_train[i]}")
plt.show()

Dataloader

■ We then instantiate an MNISTDataset using the data we just downloaded:

■ Now we can use that dataset object in conjunction to what pytorch calls a Dataloader:

■ In our context, a DataLoader object acts like a Python generator that yields a set of
datapoints and their corresponding labels (a mini-batch) at a time.

■ The number of data points it yields is controlled by batch_size.
■ The shuffle parameter makes the loader shuffle the data once all its batches were

yielded, in order to produce new batches for the next time it has to yield data.
■ This object will coordinate the usage of mini-batches in our network learning process.

train_dataset = MNISTDataset(x_train, y_train)

from torch.utils.data import DataLoader
train_dl = DataLoader(train_dataset, batch_size=32, shuffle=True)

Network, Optimizers and Loss

■ As before, we define and instantiate a similar NN, now with 1000 hidden units:

■ We’ll use Cross Entropy again and, now, the ADAM optimizer (with learning rate of 0.01):

class MNISTNeuralNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.input_to_hidden_layer = nn.Linear(28 * 28, 1000) # The input size is the number Of pixels
 self.hidden_layer_activation = nn.ReLU() # in an individual image.
 self.hidden_to_output_layer = nn.Linear(1000, 10)
 def forward(self, x):
 x = self.input_to_hidden_layer(x)
 x = self.hidden_layer_activation(x)
 x = self.hidden_to_output_layer(x)
 return x
model = MNISTNeuralNet().to(device)

from torch.optim import Adam
opt = Adam(model.parameters(), lr=1e-2)
loss_func = nn.CrossEntropyLoss()

Training the network

■ This time, we’ll create a function that performs those four typical in Pytorch training:

■ We’ll also keep track of the accuracy of our model using the function:

def train_batch(x, y, model, opt, loss_fn):
 model.train() # We’ll see the meaning of this line later today

 opt.zero_grad() # Flush memory
 batch_loss = loss_func(model(x), y) # Compute loss
 batch_loss.backward() # Compute gradients
 opt.step() # Make a GD step
 return batch_loss.detach().cpu().numpy() # Removes grad, sends data to cpu, converts tensor to array

@torch.no_grad() # This decorator is used to tell PyTorch that nothing here is used for training
def accuracy(x, y, model):
 model.eval() # We’ll see the meaning of this line later today

 prediction = model(x) # Check model prediction
 argmaxes = prediction.argmax(dim=1) # Compute the predicted labels for the batch
 s = torch.sum((argmaxes == y).float())/len(y) # Compute accuracy
 return s.cpu().numpy()

Training the network

■ Now let’s train our network!

losses, accuracies, n_epochs = [], [], 5
for epoch in range(n_epochs):
 print(f"Running epoch {epoch + 1} of {n_epochs}")

 epoch_losses, epoch_accuracies = [], []
 for batch in train_dl:
 x, y = batch
 batch_loss = train_batch(x, y, model, opt, loss_func)
 epoch_losses.append(batch_loss)
 epoch_loss = np.mean(epoch_losses)

 for batch in train_dl:
 x, y = batch
 batch_acc = accuracy(x, y, model)
 epoch_accuracies.append(batch_acc)
 epoch_accuracy = np.mean(epoch_accuracies)

 losses.append(epoch_loss)
 accuracies.append(epoch_accuracy)

Training the network

■ Now let’s train our network!

losses, accuracies, n_epochs = [], [], 5
for epoch in range(n_epochs):
 print(f"Running epoch {epoch + 1} of {n_epochs}")

 epoch_losses, epoch_accuracies = [], []
 for batch in train_dl:
 x, y = batch
 batch_loss = train_batch(x, y, model, opt, loss_func)
 epoch_losses.append(batch_loss)
 epoch_loss = np.mean(epoch_losses)

 for batch in train_dl:
 x, y = batch
 batch_acc = accuracy(x, y, model)
 epoch_accuracies.append(batch_acc)
 epoch_accuracy = np.mean(epoch_accuracies)

 losses.append(epoch_loss)
 accuracies.append(epoch_accuracy)

Runs gradient descent on each batch (of
size 32) at a time.

Computes the classification accuracy on
the training data also using the same
Dataloader

Keeps track of losses and training accuracy.

Plotting the training statistics

■ We plot our train and test performance over epochs (your results can be slightly different):

import matplotlib.pyplot as plt

epochs = np.arange(n_epochs) + 1
plt.figure(figsize=(20,3))
plt.subplot(121)
plt.title('Training Loss value over epochs')
plt.plot(epochs, losses)
plt.subplot(122)
plt.title('Training Accuracy value over epochs')
plt.plot(epochs, accuracies)

Testing the model

■ Finally we test the learned model on the test data. First we load the data and create a
dataset object and a dataloader with it:

and then we compute the accuracy of the trained model on that dataset:

mnist_test = datasets.MNIST(data_folder, download=True, train=False)
x_test, y_test = mnist_test.data, mnist_test.targets

test_dataset = MNISTDataset(x_test, y_test)
test_dl = DataLoader(test_dataset, batch_size=32, shuffle=True)

epoch_accuracies = []
for ix, batch in enumerate(iter(test_dl)):
 x, y = batch
 epoch_accuracies.append(accuracy(x, y, model))

print(f"Test accuracy: {np.mean(epoch_accuracies)}")

Test accuracy: 0.9637579917907715

Regularization in Deep Learning

x

■ Not bad: 96% of accuracy! But we can try to improve it with Regularization! But, first: if
you were to draw the function that generated the points below, how would it look like?

Regularization in Deep Learning

x

■ A possible solution is the following, where we made sure that the function went through
all points:

Regularization in Deep Learning

x

■ Another one, simpler, is a line, when we realize that these points are probably noisy
samples from regressor function.

Regularization in Deep Learning

x

■ In general the second, simpler, option is preferred (using Ockham's Razor principle*),
especially because it avoids fitting the intrinsic noise in the data (overfitting).

* Ockham's Razor is the principle that, if many models/solutions are available, one should pick the simpler one.

Regularization in Deep Learning

Without regularization

With regularization

■ Despite the previous example of a regression problem, an
analogous example can be traced to classification tasks.

■ To add regularization to Deep Learning, the usual practice
is to add a regularizer R(θ) to its average loss function:

where λ (“lambda”) is a positive constant.
■ In other words, R(θ) should ensure that the the network

weights W0, W1, …, WL are “well-behaved”.

Prevents the model from doing
too well on training data

Encourages predictions to
match training data

Regularization in Deep Learning

■ Typical regularizers are the L1 and L2 norms, that consider that the
network weights shouldn’t achieve very high values.

■ Another, quite unexpectedly, regularizer is Dropout, which consists
in randomly ignoring certain nodes in a layer during training:

■ In practice, when using dropout, we set a variable p ∈ (0, 1) that
indicates the percentage of units in a given layer will be “turn off”
during training.

■ At the beginning of each SGD epoch, another sample of units to turn
off is randomly chosen with probability p.

Standart Network

Network With Dropout

Improving the Result: Batch-Normalization

■ Another regularization technique used to improve a deep learning model is called Batch
Normalization (BN).

■ This is similar to the rescaling phase during preprocessing: we don’t want the outputs of
each layer to have a very large range. Additionally, we also change their mean.

■ Basically, if x1, x2, …, xm are the outputs of layer for a given data batch, we first compute
their mean and standard deviation:

■ Then we rescale and shift each output using the following formula using the parameters
γ and β, which will become the new standard deviation and mean of the xs, respectively:

Improving the Result: Batch-Normalization

■ This simple change was show to accelerate training and improve learning performance:

class MNISTNeuralNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.input_to_hidden_layer = nn.Linear(28 * 28, 1000)
 self.batch_norm = nn.BatchNorm1d(1000)
 self.hidden_layer_activation = nn.ReLU()
 self.hidden_to_output_layer = nn.Linear(1000, 10)
 def forward(self, x):
 x = self.input_to_hidden_layer(x)
 x = self.batch_norm(x)
 x = self.hidden_layer_activation(x)
 x = self.hidden_to_output_layer(x)
 return x

■ In PyTorch, you can add it step
via nn.BatchNorm1d() and
it acts like a module in the
network definition.

■ On the right, we change our
network to have a BN step
right before the activation
function of the hidden layer.

Improving the Result: Dropout

■ Finally, we add a regularizer via dropout to our network, via the nn.Dropout() module:

In this case, we say the the weights in the following layer (hidden_to_output_layer)
will have 25% of its units turned off randomly.

class MNISTNeuralNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.input_to_hidden_layer = nn.Linear(28 * 28, 1000)
 self.batch_norm = nn.BatchNorm1d(1000)
 self.hidden_layer_activation = nn.ReLU()
 self.dropout = nn.Dropout(0.25)
 self.hidden_to_output_layer = nn.Linear(1000, 10)
 def forward(self, x):
 x = self.input_to_hidden_layer(x)
 x = self.batch_norm(x)
 x = self.hidden_layer_activation(x)
 x = self.dropout(x)
 x = self.hidden_to_output_layer(x)
 return x

Model evaluation and training

■ Having seen BN and Dropout modules, we are ready to understand what each of why
we have model.train() and model.eval() in the following functions:

■ They tell PyTorch to switch from “learning mode” to “evaluation mode”.
■ This helps inform modules such as Dropout and BN, which are designed to behave

differently during training and evaluation.
■ For instance, in training mode, BN updates the mean of each new batch, whereas, for

evaluation/testing mode, these updates do not happen.
■ You can call either model.eval() or model.train(mode=False) to tell PyTorch that

you are testing.

def train_batch(x, y, model, opt, loss_fn):
 model.train()
 (...)

def accuracy(x, y, model):
 model.eval()
 (...)

Exercise (In pairs)

■ Run the previous results on the MNIST dataset using the dropout and BN modules as
shown previously, keeping all the previous parameters (such as number of epochs) the
same. Keep track of learning time, final training accuracy and test accuracy.

■ Now, remove the BN module and focus on dropout. Change p to 0.1 and then to 0.9 and
note the change in train/test accuracy and learning time.

Extra Material:
● There is this very good tutorial called learnpytorch.io that helps you learn PyTorch through

examples. Pretty good stuff in there.
● Tensorflow (PyTorch’s competitor) has this nice website where you can train different networks

in different datasets, under different parameters. It is really worth play with it

Click here to open code in Colab

https://www.learnpytorch.io/
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.74390&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://colab.research.google.com/drive/1ALnOUonCe2PCYaEu6RacF8GYkNcxxoKx?ouid=111909708776057753574&usp=drive_link
https://colab.research.google.com/drive/1ALnOUonCe2PCYaEu6RacF8GYkNcxxoKx?ouid=111909708776057753574&usp=drive_link

Video: Go AlphaGo!

http://www.youtube.com/watch?v=53YLZBSS0cc

