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Lec 6: Pytorch II – Images and Regularization
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Announcements

■ Quiz 2:
● Will happen after class.
● Make sure to remember it every week.

■ Lab 2 due today!



MLPs in Pytorch

■ Last time we saw how to write a simple Pytorch scripts 
and use it in a classification problem (on the right).

■ However, despite using SGD, we were not 
mini-batches and, truth be told the data was quite 
simple to work with.

■ Today we’ll improve our pytorch implementation from 
last time and cover the important topic of 
regularization in Deep Learning.
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Making more complex networks

■ The toy dataset we last time before isn’t a 
good example of realistic data.

■ A more realistic (and more convenient to 
Computer Vision) dataset in the MNIST 
handwritten digits.

■ The database contains 28×28 grayscale 
images representing the digits 0 through 9 
(some depicted on the right).

■ The data is split into two subsets, with 
60000 images for training and 10000 
images for testing.

■ Before we go there, we should ask 
ourselves: what is an image?



What is an image?

Grayscale 
image

Individual Pixel Gray Values■ An image as a data structure is simply 
a matrix (or matrices) of integer 
numbers ranging from 0 to 255 (one 
byte of data).

■ Pixels are the individual subdivisions 
of an image, each with one sole color.

■ A grayscale image is an image that 
only needs one of these matrices to 
represent its data.

■ In a grayscale image, each of its pixels 
is colored with a shade of gray, 
whose color ranges from black (value 
0) to white (value 255).

One pixel



■ For colored images, we make each individual pixel contain 3 integers, each in [0, 255].
■ These values represent the the intensities of Red, Blue and Green (RGB)* in that pixel, in 

this order, giving the name for thai kind of image an RGB image.
■ Each color channel (R, G or B) is then represented by a gray scale image and the full 

image is the stacking of its channels. 

What is an image?

RGB image Red channel Green channel Blue channel

, ,

Stack of channels

* There are other ways to define a colored image that is not RGB (ex.: CYMK = Cyan, Yellow, Magenta and Black).



Loading the data

■ With that out of the way, we can now (down)load the MNIST dataset, which PyTorch 
provides (along with other datasets) in the torchvision library.

from torchvision import datasets

data_folder = '~/data/MNIST'
mnist_train = datasets.MNIST(data_folder, download=True, train=True)
X_train, y_train = mnist_train.data, mnist_train.targets

from torch.utils.data import Dataset
class MNISTDataset(Dataset):
   def __init__(self, x, y):
       x = x.float()/255 # Data rescaling
       x = x.view(-1,28*28) # Data reshaping
       self.x, self.y = x, y
   def __len__(self):
       return len(self.x)
   def __getitem__(self, ix):
       x, y = self.x[ix], self.y[ix]
       return x.to(device), y.to(device)

■ We also create a class for our dataset 
that inherits from Pytorch’s Dataset.

■ Note that two pre-processing actions 
take place on the data:
● Rescaling: it makes all data values be 

in the range [0, 1].
● Reshaping: turn images into vectors.



Visualizing the data

■ It is always a good practice to check how the data looks like before working on it.

■ This is an example of how PyTorch organizes the data dimensions: (N,C,H,W)
● First the number of datapoints, (N); then the number of channels in each point, (C); then the 

height (H) and width of each point (W). 
● If either dimension (N, C, H or W) is just 1, it won’t show up. 

■ We can check the data itself. Here are the first 4 data points and their true labels:

print(x_train.shape)
print(y_train.shape)

torch.Size([60000, 28, 28])
torch.Size([60000])

import matplotlib.pyplot as plt
plt.figure(figsize=(10,3))
for i in range(4):
   plt.subplot(1,4,i+1)
   plt.imshow(x_train[i])
   plt.title(f"Label {y_train[i]}")
plt.show()



Dataloader

■ We then instantiate an MNISTDataset using the data we just downloaded:  

■ Now we can use that dataset object in conjunction to what pytorch calls a Dataloader:

■ In our context, a DataLoader object acts like a Python generator that yields a set of 
datapoints and their corresponding labels (a mini-batch) at a time.

■ The number of data points it yields is controlled by batch_size.
■ The shuffle parameter makes the loader shuffle the data once all its batches were 

yielded, in order to produce new batches for the next time it has to yield data.
■ This object will coordinate the usage of mini-batches in our network learning process.

train_dataset = MNISTDataset(x_train, y_train)

from torch.utils.data import DataLoader
train_dl = DataLoader(train_dataset, batch_size=32, shuffle=True)



Network, Optimizers and Loss

■ As before, we define and instantiate a similar NN, now with 1000 hidden units:

■ We’ll use Cross Entropy again and, now, the ADAM optimizer (with learning rate of 0.01): 

class MNISTNeuralNet(nn.Module):
   def __init__(self):
       super().__init__()
       self.input_to_hidden_layer = nn.Linear(28 * 28, 1000) # The input size is the number Of pixels 
       self.hidden_layer_activation = nn.ReLU()     # in an individual image.  
       self.hidden_to_output_layer = nn.Linear(1000, 10)
   def forward(self, x):
       x = self.input_to_hidden_layer(x)
       x = self.hidden_layer_activation(x)
       x = self.hidden_to_output_layer(x)
       return x
model = MNISTNeuralNet().to(device)

from torch.optim import Adam
opt = Adam(model.parameters(), lr=1e-2)
loss_func = nn.CrossEntropyLoss()



Training the network

■ This time, we’ll create a function that performs those four typical in Pytorch training:

■  We’ll also keep track of the accuracy of our model using the function:

def train_batch(x, y, model, opt, loss_fn):
   model.train() # We’ll see the meaning of this line later today

   opt.zero_grad()  # Flush memory 
   batch_loss = loss_func(model(x), y)  # Compute loss
   batch_loss.backward()  # Compute gradients
   opt.step()  # Make a GD step
   return batch_loss.detach().cpu().numpy() # Removes grad, sends data to cpu, converts tensor to array

@torch.no_grad() # This decorator is used to tell PyTorch that nothing here is used for training 
def accuracy(x, y, model):
   model.eval() # We’ll see the meaning of this line later today

   prediction = model(x) # Check model prediction
   argmaxes = prediction.argmax(dim=1) # Compute the predicted labels for the batch
   s = torch.sum((argmaxes == y).float())/len(y) # Compute accuracy
   return s.cpu().numpy()



Training the network

■ Now let’s train our network! 

losses, accuracies, n_epochs = [], [], 5
for epoch in range(n_epochs):
   print(f"Running epoch {epoch + 1} of {n_epochs}")

   epoch_losses, epoch_accuracies = [], []
   for batch in train_dl:
       x, y = batch
       batch_loss = train_batch(x, y, model, opt, loss_func)
       epoch_losses.append(batch_loss)
   epoch_loss = np.mean(epoch_losses)

   for batch in train_dl:
       x, y = batch
       batch_acc = accuracy(x, y, model)
       epoch_accuracies.append(batch_acc)
   epoch_accuracy = np.mean(epoch_accuracies)

   losses.append(epoch_loss)
   accuracies.append(epoch_accuracy)



Training the network

■ Now let’s train our network! 

losses, accuracies, n_epochs = [], [], 5
for epoch in range(n_epochs):
   print(f"Running epoch {epoch + 1} of {n_epochs}")

   epoch_losses, epoch_accuracies = [], []
   for batch in train_dl:
       x, y = batch
       batch_loss = train_batch(x, y, model, opt, loss_func)
       epoch_losses.append(batch_loss)
   epoch_loss = np.mean(epoch_losses)

   for batch in train_dl:
       x, y = batch
       batch_acc = accuracy(x, y, model)
       epoch_accuracies.append(batch_acc)
   epoch_accuracy = np.mean(epoch_accuracies)

   losses.append(epoch_loss)
   accuracies.append(epoch_accuracy)

Runs gradient descent on each batch (of 
size 32) at a time.

Computes the classification accuracy on 
the training data also using the same 
Dataloader

Keeps track of losses and training accuracy.



Plotting the training statistics

■ We plot our train and test performance over epochs (your results can be slightly different):

import matplotlib.pyplot as plt

epochs = np.arange(n_epochs) + 1
plt.figure(figsize=(20,3))
plt.subplot(121)
plt.title('Training Loss value over epochs')
plt.plot(epochs, losses)
plt.subplot(122)
plt.title('Training Accuracy value over epochs')
plt.plot(epochs, accuracies)



Testing the model

■ Finally we test the learned model on the test data. First we load the data and create a 
dataset object and a dataloader with it:

and then we compute the accuracy of the trained model on that dataset:

mnist_test = datasets.MNIST(data_folder, download=True, train=False)
x_test, y_test = mnist_test.data, mnist_test.targets

test_dataset = MNISTDataset(x_test, y_test)
test_dl = DataLoader(test_dataset, batch_size=32, shuffle=True)

epoch_accuracies = []
for ix, batch in enumerate(iter(test_dl)):
   x, y = batch
   epoch_accuracies.append(accuracy(x, y, model))

print(f"Test accuracy: {np.mean(epoch_accuracies)}")

Test accuracy: 0.9637579917907715



Regularization in Deep Learning

x

■ Not bad: 96% of accuracy! But we can try to improve it with Regularization! But, first: if 
you were to draw the function that generated the points below, how would it look like? 



Regularization in Deep Learning

x

■ A possible solution is the following, where we made sure that the function went through 
all points:



Regularization in Deep Learning

x

■ Another one, simpler, is a line, when we realize that these points are probably noisy 
samples from regressor function. 



Regularization in Deep Learning

x

■ In general the second, simpler, option is preferred (using Ockham's Razor principle*), 
especially because it avoids fitting the intrinsic noise in the data (overfitting).

* Ockham's Razor is the principle that, if many models/solutions are available, one should pick the simpler one.



Regularization in Deep Learning

Without regularization

With regularization

■ Despite the previous example of a regression problem, an 
analogous example can be traced to classification tasks.

■ To add regularization to Deep Learning, the usual practice 
is to add a regularizer R(θ) to its average loss function:

where λ (“lambda”) is a positive constant.
■ In other words, R(θ) should ensure that the the network 

weights W0, W1, …, WL are “well-behaved”. 

Prevents the model from doing 
too well on training data

Encourages predictions to 
match training data



Regularization in Deep Learning

■ Typical regularizers are the L1 and L2 norms, that consider that the 
network weights shouldn’t achieve very high values.

■ Another, quite unexpectedly, regularizer is Dropout, which consists 
in randomly ignoring certain nodes in a layer during training:

■ In practice, when using dropout, we set a variable p ∈ (0, 1) that 
indicates the percentage of units in a given layer will be “turn off” 
during training.

■ At the beginning of each SGD epoch, another sample of units to turn 
off is randomly chosen with probability p.

Standart Network

Network With Dropout



Improving the Result: Batch-Normalization

■ Another regularization technique used to improve a deep learning model is called Batch 
Normalization (BN).

■ This is similar to the rescaling phase during preprocessing: we don’t want the outputs of 
each layer to have a very large range. Additionally, we also change their mean.

■ Basically, if x1, x2, …, xm are the outputs of layer for a given data batch, we first compute 
their mean and standard deviation:

■ Then we rescale and shift each output using the following formula using the parameters 
γ and β, which will become the new standard deviation and mean of the xs, respectively:



Improving the Result: Batch-Normalization

■ This simple change was show to accelerate training and improve learning performance:

class MNISTNeuralNet(nn.Module):
   def __init__(self):
       super().__init__()
       self.input_to_hidden_layer = nn.Linear(28 * 28, 1000)
       self.batch_norm = nn.BatchNorm1d(1000)
       self.hidden_layer_activation = nn.ReLU()
       self.hidden_to_output_layer = nn.Linear(1000, 10)
   def forward(self, x):
       x = self.input_to_hidden_layer(x)
       x = self.batch_norm(x)
       x = self.hidden_layer_activation(x)
       x = self.hidden_to_output_layer(x)
       return x

■ In PyTorch, you can add it step 
via nn.BatchNorm1d() and 
it acts like a module in the 
network definition.

■ On the right, we change our 
network to have a BN step 
right before the activation 
function of the hidden layer.



Improving the Result: Dropout

■ Finally, we add a regularizer via dropout to our network, via the nn.Dropout() module:

In this case, we say the the weights in the following layer (hidden_to_output_layer) 
will have 25% of its units turned off randomly. 

class MNISTNeuralNet(nn.Module):
   def __init__(self):
       super().__init__() 
       self.input_to_hidden_layer = nn.Linear(28 * 28, 1000)
       self.batch_norm = nn.BatchNorm1d(1000)
       self.hidden_layer_activation = nn.ReLU()
       self.dropout = nn.Dropout(0.25)
       self.hidden_to_output_layer = nn.Linear(1000, 10)
   def forward(self, x):
       x = self.input_to_hidden_layer(x)
       x = self.batch_norm(x)
       x = self.hidden_layer_activation(x)
       x = self.dropout(x)
       x = self.hidden_to_output_layer(x)
       return x



Model evaluation and training

■ Having seen BN and Dropout modules, we are ready to understand what each of why 
we have model.train() and model.eval() in the following functions:

■ They tell PyTorch to switch from “learning mode” to “evaluation mode”.
■ This helps inform modules such as Dropout and BN, which are designed to behave 

differently during training and evaluation.
■ For instance, in training mode, BN updates the mean of each new batch, whereas, for 

evaluation/testing mode, these updates do not happen. 
■ You can call either model.eval() or model.train(mode=False) to tell PyTorch that 

you are testing.

def train_batch(x, y, model, opt, loss_fn):
   model.train()
   (...)

def accuracy(x, y, model):
   model.eval() 
   (...)



Exercise (In pairs)

■ Run the previous results on the MNIST dataset using the dropout and BN modules as 
shown previously, keeping all the previous parameters (such as number of epochs) the 
same. Keep track of learning time, final training accuracy and test accuracy.

■ Now, remove the BN module and focus on dropout. Change p to 0.1 and then to 0.9 and 
note the change in train/test accuracy and learning time.

Extra Material: 
● There is this very good tutorial called learnpytorch.io that helps you learn PyTorch through 

examples. Pretty good stuff in there.
● Tensorflow (PyTorch’s competitor) has this nice website where you can train different networks 

in different datasets, under different parameters. It is really worth play with it

Click here to open code in Colab

https://www.learnpytorch.io/
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.74390&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://colab.research.google.com/drive/1ALnOUonCe2PCYaEu6RacF8GYkNcxxoKx?ouid=111909708776057753574&usp=drive_link
https://colab.research.google.com/drive/1ALnOUonCe2PCYaEu6RacF8GYkNcxxoKx?ouid=111909708776057753574&usp=drive_link


Video: Go AlphaGo!

http://www.youtube.com/watch?v=53YLZBSS0cc

